切割速度18000mm/min
切割精度±0.05mm
切割刀缝0.45mm, 0.71mm, 1.05mm…等,可调控
工作气体氦气He 氮气N2 二氧化碳CO2
机床尺寸3000×2300×1800mm
激光刀模与传统刀模的区别
根据实际情况处置好,激光刀模的工作流程是先在AUTOCA D或其它一些针对刀模开发的软件将需要制作的刀模设计好。再存储为相应机器受理的文件格式,即可启动激光刀模切割机进行切割,用电脑弯刀机进行弯刀。弯刀出来后有些地方需要经过手动弯刀机进行修整。完成后装置模切刀线制作成刀模成品。
传统的手工刀模,通过锯床锯的移动的过程中就会形成错位而产生误差;加工速度慢;而使用了激光切割机后,激进刀模制作是刀模板上用铅笔或圆珠笔进行绘制。绘图设计就可以直接在计算机上进行,刀模板是由激光切割机全自动运行切割成型,不需要人工干预。误差小,速度快。对于激光刀模切割机的应用可以明显加速企业的发展,提高经济效益。

各种刀模的优劣对比,教你如何选择合适的刀模?
认识刀模
刀的种类从刀锋角度,刀身和刀锋的硬度,刀锋的纹路,刀锋和刀身的表面加工工艺来区分的话,就不下 100多种。
刀模的开发与制作是建立在,深刻理解客户产品需求信息和对材料有相当了解的基础上的。客户要表达的信息,都呈现在那张设计图上,所以要审图在先,把客户的要求转换成自己的工艺流程,终产品的呈现。
设计生产工艺流程,就要求工程人员对材料有相当的认识。还有另一个要素就是,对自己公司的机器的性能也要相当的了解,可以这样说:认识材料、了解机器生产性能,这是必须*的基本功。
知道客户要得到的是什么、知道材料的属性、再联想我们机器的生产性能,在脑海中构造生产时的情景,会出现的问题,怎样解决?解决的方案就是你设计的工艺流程,而刀模就是能把你的所思所想变成现实的重要工具。能否达成客户的需求,就看你那把刀制作的怎样了。
激光刀模
利用激光的强能量性对刀模板进行高深度烧蚀,从而达到安装切割刀的目的。
蚀刻刀模
蚀刻刀模、雕刻刀模是继激光刀模后发展出的一种精度高、难度高、刀口无缝、切断线条光滑、重复精度高的刀模。其主要应用于软性电路板 FPC,电子薄膜,偏光片,背光片,透光片,折射片,不干胶,纸工艺, 麦拉片PET……
雕刻刀模
在模切行业中比较常用的产品,一般用于冲压出所需的模切产品的形状。其精度较高。
五金刀模
利用上下各三块特种钢材板夹结构的套合冲切模具,在基板之沿封闭或敞开轮廓线使材料产生分离的。五金刀模下模的寿命和孔的刀口高度有直接联系,刀口无法再研磨时五金模的寿命就结束了。
QDC模具
QDC 模即采用模块组合的方式,使用雕刻刀模或腐蚀刀模安装到五金冲模模座中,进行冲切、清废;可以根据不同的模切需要进行快速模具更换,兼顾刀模的优势和冲模的精度、稳定性。
各种刀模优缺点对比
蚀刻刀模与激光刀模对比:
蚀刻刀模
激光刀模
1.成品设计限制小:角度及窄小缝隙依然能成型,适用于电子材料的模切
1.成品外形设计较大限制多,适用于一般彩盒或较要求不高的工件
2.刀面平整、替换快,节省因测试时所耗费的材料与时间
2.刀面平整度较差,常须使用垫片调整,需人员操作,耗时费材
3.同一套,可轻易做高低刀组合,面对复杂工件可一次成型,符合时间与精度要求
3.高低刀组合较难控制
4.同一刀口可变化不同角度,应对多种不同材料变化
4.只能制作一种角度,无法变化
5.无缝刀口、且垂直度佳、切断面光滑。尤其用于光学膜
5.刀口有接缝
6.调模时间短
6.调模时间长
7.数个同图形在同一模上,尺寸趋近相同
7. 数个同图形在同一模上,尺寸相差较大
8.同一把刀重复制作,误差趋近于零
8.同一把刀重复制作,误差较大
木模与蚀刻模、镜面蚀刻刀模优、缺点比较:
木模
蚀刻模
镜面蚀刻模
优点
1.单价低;
2.镜面、刺;
3.交期快(12 小时内)。
1.无接刀口;
2.尺寸不变;
3.模切次数较多。
1.镜面处理后的蚀刻模不会产生毛刺等问题;
2.所有蚀刻模的优点都存有。
3.交期尽量改善至 12 小时内;
4.单价可议(推广时间)。
缺点
1.有接刀口;
2.尺寸会因外部因素而改变;
3.模切次数不够多。
1.单价偏高;
2.因无镜面处理故裁切背光模 (如扩散片、菱镜片等)时易产生毛 刺、粉尘等问题。
模切不同的材料要用不同的刀片才能达到佳效果。还有刀模、材料、弹力海绵垫的3者的配合也至关重要。有一些材料经过模切后会产生尺寸变异,要做出好的刀模,也是需要刀模厂对材料的特性有了解,然后制定相应的加工工艺。

激光切割加工技术详解
激光切割技术是利用高能量密度的激光束加热工件,使温度迅速上升,在非常短的时间内达到材料的沸点,材料开始汽化,形成蒸气。这些蒸气的喷出速度很大,在蒸气喷出的同时,在材料上形成切口。
简介
利用激光切割设备可切割4mm以下的不锈钢,在激光束中加氧气可切割20mm厚的碳钢,但加氧切割后会在切割面形成薄薄的氧化膜。切割的大厚度可增加到20mm,但切割部件的尺寸误差较大。
激光切割设备的价格相当贵,约150万元以上。但是,由于降低了后续工艺处理的成本,所以,在大生产中采用这种设备还是可行的。由于没有加工成本,所以激光切割设备也适用生产小批量的原先不能加工的各种尺寸的部件。激光切割设备通常采用计算机化数字控制技术(CNC)装置,采用该装置后,就可以利用电话线从计算机设计(CAD)工作站来接受切割数据。
原理
激光切割是利用经聚焦的高功率密度激光束照射工件,使被照射的材料迅速熔化、汽化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹除熔融物质,从而实现将工件割开。激光切割属于热切割方法之一。
激光切割可分为激光汽化切割、激光熔化切割、激光氧气切割和激光划片与控制断裂四类。
激光汽化切割
利用高能量密度的激光束加热工件,使温度迅速上升,在非常短的时间内达到材料的沸点,材料开始汽化,形成蒸气。这些蒸气的喷出速度很大,在蒸气喷出的同时,在材料上形成切口。材料的汽化热一般很大,所以激光汽化切割时需要很大的功率和功率密度。
激光汽化切割多用于薄金属材料和非金属材料(如纸、布、木材、塑料和橡皮等)的切割。
激光熔化切割
激光熔化切割时,用激光加热使金属材料熔化,然后通过与光束同轴的喷嘴喷吹非氧化性气体(Ar、He、N等),依靠气体的强大压力使液态金属排出,形成切口。激光熔化切割不需要使金属完全汽化,所需能量只有汽化切割的1/10。
激光熔化切割主要用于一些不易氧化的材料或活性金属的切割,如不锈钢、钛、铝及其合金等。
激光氧气切割
激光氧气切割原理类似于氧乙炔切割。它是用激光作为预热热源,用氧气等活性气体作为切割气体。喷吹出的气体一方面与切割金属作用,发生氧化反应,放出大量的氧化热;另一方面把熔融的氧化物和熔化物从反应区吹出,在金属中形成切口。由于切割过程中的氧化反应产生了大量的热,所以激光氧气切割所需要的能量只是熔化切割的1/2,而切割速度远远大于激光汽化切割和熔化切割。
激光划片与控制断裂
激光划片是利用高能量密度的激光在脆性材料的表面进行扫描,使材料受热蒸发出一条小槽,然后施加一定的压力,脆性材料就会沿小槽处裂开。激光划片用的激光器一般为Q开关激光器和CO2激光器。
控制断裂是利用激光刻槽时所产生的陡峭的温度分布,在脆性材料中产生局部热应力,使材料沿小槽断开。
主要特性
切缝窄工件变形小
激光束聚焦成很小的光点,使焦点处达到很高的功率密度。这时光束输入的热量远远**过被材料反射、传导或扩散的部分,材料很快加热至汽化程度,蒸发形成孔洞。
切割过程中还添加与被切材料相适合的汽体。钢切割时利用氧作为汽体与熔融金属产生放热化学反应氧化材料,同时帮助吹走割缝内的熔渣。切割聚丙烯一类塑料使用压缩空气,棉、纸等易燃材料切割使用惰性汽体。进入喷嘴的汽体还能冷却聚焦透镜,防止烟尘进入透镜座内污染镜片并导致镜片过热。
大多数**与无机材料都可以用激光切割。在工业制造系统占有份量很重的金属加工业,许多金属材料,不管它是什么样的硬度,都可以进行无变形切割。当然,对高反射率材料,如金、银、铜和铝合金,它们也是好的传热导体,因此激光切割很困难,甚至不能切割。激光切割刺、皱折、精度高,优于等离子切割。对许多机电制造行业来说,由于微机程序控制的现代激光切割系统能方便切割不同形状与尺寸的工件,它往往比冲切、模压工艺更被**选用;尽管它加工速度还慢于模冲,但它没有模具消耗,无须修理模具,还节约更换模具时间,从而节省了加工费用,降低了生产成本,所以从总体上考虑是更合算的。
无接触加工
激光束聚焦后形成具有强能量的很小作用点,把它应用于切割有许多特点。先,激光光能转换成惊人的热能保持在小的区域内,可提供
⑴狭的直边割缝;⑵小的邻近切边的热影响区;⑶小的局部变形。
其次,激光束对工件不施加任何力,它是无接触切割工具,这就意味着⑴工件无机械变形;⑵无磨损,也谈不上的转换问题;⑶切割材料无须考虑它的硬度,也即激光切割能力不受被切材料的硬度影响,任何硬度的材料都可以切割。再次,激光束可控性强,并有高的适应性和柔性,因而⑴与自动化设备相结合很方便,容易实现切割过程自动化;⑵由于不存在对切割工件的限制,激光束具有无限的仿形切割能力;⑶与计算机结合,可整张板排料,节省材料。

激光的应用领域
国外除上述应用外,还在不断扩展其应用领域。
⑴采用三维激光切割系统或配置工业机器人,切割空间曲线,开发各种三维切割软件,以加快从画图到切割零件的过程。
⑵为了提高生产效率,研究开发各种切割系统,材料输送系统,直线电机驱动系统等,如今切割系统的切割速度已**过100m/min。
⑶为扩展工程机械、造船工业等的应用,切割低碳钢厚度已**过30mm,并特别注意研究用氮气切割低碳钢的工艺技术,以提高切割厚板的切口质量。因此在中国扩大CO2激光切割的工业应用领域,解决新的应用中一些技术难题仍然是工程技术人员的重要课题。
关键技术一
CO2激光切割的几项关键技术是光、机、电一体化的综合技术。
激光束的参数、机器与数控系统的性能和精度都直接影响激光切割的效率和质量。特别是对于切割精度较高或厚度较大的零件,必须掌握和解决以下几项关键技术:
焦点位置控制技术
焦点位置控制技术:激光切割的优点之一是光束的能量密度高,一般10W/cm2。由于能量密度与4/πd2成正比,所以焦点光斑直径尽可能的小,以便产生一窄的切缝;同时焦点光斑直径还和透镜的焦深成正比。聚焦透镜焦深越小,焦点光斑直径就越小。但切割有飞溅,透镜离工件太近容易将透镜损坏,因此一般大功率CO2激光切割工业应用中广泛采用5〃~7.5〃〞(127~190mm)的焦距。实际焦点光斑直径在0.1~0.4mm之间。对于高质量的切割,有效焦深还和透镜直径及被切材料有关。例如用5〃的透镜切碳钢,焦深为焦距的+2%范围内,即5mm左右。因此控制焦点相对于被切材料表面的位置十分重要。顾虑到切割质量、切割速度等因素,原则上6mm的碳钢,焦点在表面之上;6mm的不锈钢,焦点在表面之下。具体尺寸由实验确定。
在工业生产中确定焦点位置的简便方法有三种:⑴打印法:使切割头从上往下运动,在塑料板上进行激光束打印,打印直径小处为焦点。⑵斜板法:用和垂直轴成一角度斜放的塑料板使其水平拉动,寻找激光束的小处为焦点。⑶蓝色火花法:去掉喷嘴,吹空气,将脉冲激光打在不锈钢板上,使切割头从上往下运动,直至蓝色火花大处为焦点。对于飞行光路的切割机,由于光束发散角,切割近端和远端时光程长短不同,聚焦前的光束尺寸有一定差别。入射光束的直径越大,焦点光斑的直径越小。为了减少因聚焦前光束尺寸变化带来的焦点光斑尺寸的变化,国内外激光切割系统的制造商提供了一些的装置供用户选用:
⑴平行光管。这是一种常用的方法,即在CO2激光器的输出端加一平行光管进行扩束处理,扩束后的光束直径变大,发散角变小,使在切割工作范围内近端和远端聚焦前光束尺寸接近一致。
⑵在切割头上增加一立的移动透镜的下轴,它与控制喷嘴到材料表面距离(stand off)的Z轴是两个相互立的部分。当机床工作台移动或光轴移动时,光束从近端到远端F轴也同时移动,使光束聚焦后光斑直径在整个加工区域内保持一致。
⑶控制聚焦镜(一般为金属反射聚焦系统)的水压。若聚焦前光束尺寸变小而使焦点光斑直径变大时,自动控制水压改变聚焦曲率使焦点光斑直径变小。
⑷飞行光路切割机上增加x、y方向的补偿光路系统。即当切割远端光程增加时使补偿光路缩短;反之当切割近端光程减小时,使补偿光路增加,以保持光程长度一致。
http://bleozb.b2b168.com